
StackSimplify

AWS CloudFormation

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

• AWS CloudFormation

• Continuous Integration
• AWS Code Commit

• AWS Code Build

• Continuous Delivery
• AWS CodeDeploy

• AWS CodePipeline

• Infrastructure as Code with CI/CD Tools.

Course Objectives

StackSimplify Kalyan Reddy Daida

Template Anatomy

Resources

Parameters

Mappings

Conditions

Outputs

Metadata Designer &
Interface

AWS CloudFormation

cfn-init
Metadata

7 Examples

6 Examples

2 Examples

4 Examples

5 Examples and 18
resources overall

StackSimplify Kalyan Reddy Daida

Resources

Resources

AWS CloudFormation

Security Group

Elastic IP

VPC

Subnet

Route Table

SubnetRoute
TableAssociation

InternetGateway

VPCGatewayAtta
chment

EC2 Instance

CodeBuild IAM
Role

CodeDeploy
Application

CodeDeploy
DeploymentGro

CodeDeploy
Deploymnet

CodeDeploy IAM
Role

CodePipeline
IAM Role

CodePipeline
Pipeline

SNS Topic

CodeBuild

StackSimplify Kalyan Reddy Daida

Templates Written

StackSimplify Kalyan Reddy Daida

packages

groups

users

sources

files

commands

Metadata Format

aws-cfn-bootstrap

cfn-init

cfn-signal

outputs

Creation Policy

cfn-hup

services

Create Stack &
Test

Create Stack &
Test

Update Stack –
Deploy v2 App

Base Template

Metadata - cfn-init

StackSimplify Kalyan Reddy Daida

App1AndApp2

configSets (Single)

App1 App2

Sample:

Config Sets

StackSimplify Kalyan Reddy Daida

SingleAppCS default

App1

DualAppCS

SingleAppCS App2

App1

DualAppCS

SingleAppCS App2

App1

configSets (Multiple)

Sample:

StackSimplify Kalyan Reddy Daida

Nested Stacks
Root Stack

VPC Nested
Stack

Security Group
Nested Stack

StackSimplify Kalyan Reddy Daida

Templates Written

StackSimplify Kalyan Reddy Daida

Intrinsic Functions

• Fn::Ref

• Fn::Base64

• Fn::FindInMap

• Fn::GetAtt

• Fn::GetAzs

• Fn::ImportValue

• Fn::Join

• Fn::Select

• Fn::Sub

Intrinsic Functions & Pseudo Parameters

Condition Functions

• Fn::And

• Fn::Equals

• Fn::If

• Fn::Not

• Fn::Or

Pseudo Parameters

• AWS::Region

• AWS::AccountId

• AWS::StackName

• AWS::NoValue (very
important when using
conditions)

StackSimplify Kalyan Reddy Daida

Stages in Release Process

Source Build Production Test

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWS CodeCommit AWS CodeBuild AWS CodeDeploy AWS X-Ray
Amazon

CloudWatch

AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWS CodeCommit AWS CodeBuild AWS CodeDeploy AWS X-Ray
Amazon

CloudWatch

AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or AWS Code Services

Build Test Deploy Monitor

CodeBuild + Third Party CodeCommit CodeBuild CodeDeploy AWS X-Ray CloudWatch

• Fully managed build service, Compiles
source code, Runs tests and produces
software packages

• Scales continuously and processes multiple
builds concurrently.

• No build servers to manage.
• Pay by minute, only for compute resources

we use.
• Monitor builds through CloudWatch events.
• Supports following programming language

runtimes Ruby, Python, PHP, Node, Java,
Golang, .Net Core, Docker and Android

• Automates code deployments
to any instance and Lambda
• Avoids downtime during
application deployment
• Roll back automatically if
failure detected
• Deploy to Amazon EC2,
Lambda, or on-premises servers

• Version control
service
• We can privately
store and manage
source code
• Secure & highly
available

• Monitors Source
check-ins and triggers
builds
• Monitors builds
• Monitors
Infrastructure
• Collects logs

CodePipeline

• Continuous delivery service for fast and reliable
application updates

• Model and visualize your software release process
• Builds, tests, and deploys your code every time there

is a code change
• Integrates with third-party tools and AWS

StackSimplify Kalyan Reddy Daida

• Build a simple rest service using Java Spring
Boot.

• Check-in code to Local Repo and push to
CodeCommit.

CodeCommit

AWS CodeCommit

AWS Cloud

Local Git
Repo

push

Developer

StackSimplify Kalyan Reddy Daida

CodeBuild – AWS Web Console

AWS Cloud

Developer

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

CodeBuild Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

Local Git
Repo

CodeBuild – AWS CloudFormation

StackSimplify Kalyan Reddy Daida

AWS Cloud

Developer

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

CodeDeploy

Internet

User
accessing

Rest service

EC2 Instance

CodeDeploy Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

CodeDeploy

Internet

User
accessing

Rest service

CodeDeploy
Service Role Staging EC2 Instance

Production EC2
Instance

EC2 Apps Stack

Role for EC2
Instance Profile

Local Git
Repo

CodeDeploy – AWS Web Console CodeDeploy – AWS CloudFormation

StackSimplify Kalyan Reddy Daida

CodePipeline – AWS Web Console

AWS Cloud

Local Git
Repo

Developer

push

CodeCommit CodeBuild Simple Storage
Service (S3)

CodeDeploy EC2
Instance

CloudWatch

CodePipeline

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD CloudFormation Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodeDeploy

CodePipeline

Simple Notification
 Service

CodeDeploy

Staging EC2
Instance

Production EC2
Instance

EC2 Apps CloudFormation Stack

Authorized
 Approver

CodePipeline – AWS CloudFormation

Role for EC2
Instance Profile

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

Source Build Production Test

Source Stage Build Stage Test Stage Prod Stage

AWS CodeCommit AWS CodeBuild AWS CodePipeline AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

Source Build Production Test

Source Stage Build Stage Test Stage Prod Stage

Master Branch Prepare or Validate
Template

Create & Execute
Change set

Create & Execute
Change set

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Manual AWS Web Console

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – CFN Template creation Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Execution Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

Templates Written

StackSimplify Kalyan Reddy Daida

YAML

StackSimplify Kalyan Reddy Daida

• YAML Key Value pairs

• YAML Lists

• YAML Dictionary

• YAML Lists containing Dictionaries

• YAML Lists containing Dictionaries containing Lists

• YAML Pipe

• YAML Greater than Sign

• YAML Comments

YAML

StackSimplify Kalyan Reddy Daida

• YAML documents will be full of key value pairs.
• Key and Value are separated by colon.
• We must have a space after colon differentiating the

value.
• YAML Supports different data types.

• Integer
• Floating point Numbers
• Strings
• Boolean
• Dates - Format: ISO 8601
• Null values

• Important Note for Strings: Quote strings when they
have special characters like colons :, braces {}, pipes
|, brackets []

YAML – Key Value Pairs

Name: Dave
Age: 29
Gpa: 4.2
Occupation: Engineer
State: 'New Jersey'
AboutMe: "I am a software engineer"
Male: true
DateOfBith: 1990-09-15T15:53:00
PoliceCases: null

Key Value Pairs

StackSimplify Kalyan Reddy Daida

• YAML List indented with opening dash.

• Dash indicates that it’s a element of an
array.

• All members of a list are lines beginning at
the same indentation level starting with
a ”-” (a dash and a space)

• Block Sequence indicate each entry with a
dash and space

• Flow Sequence is written as a comma
separated list within square brackets.

YAML – List / Array

Block Sequence
Persons:
 - Dave
 - John
 - Mike
 - Sam

Flow Sequence
Persons: [Dave, John, Mike, Sam]

List / Array

StackSimplify Kalyan Reddy Daida

• YAML Dictionaries are set of properties
grouped together under an item.

• YAML Dictionaries contain key value
pairs.

YAML Dictionary / Map

Dave:
 Age: 25
 Occupation: Engineer
 State: New Jersey
 gpa: 4.5
 male: true

Dictionary

StackSimplify Kalyan Reddy Daida

YAML Lists containing Dictionaries

StackSimplify Kalyan Reddy Daida

YAML Lists containing Dictionaries containing Lists

StackSimplify Kalyan Reddy Daida

• The pipe notation, also referred to as
literal block

• All new lines, indentation, extra spaces
everything preserved as is.

YAML Pipe

StackSimplify Kalyan Reddy Daida

• The greater than sign
notation, also referred to as
folded block.

• Renders the text as a single
line.

• All new lines will be replaced
with a single space.

• Blank lines are converted to
new line character.

YAML Greater than Sign

StackSimplify Kalyan Reddy Daida

• We can have comments in YAML with # sign. Below is an example.

YAML Comments

StackSimplify Kalyan Reddy Daida

Stack Features

StackSimplify Kalyan Reddy Daida

• Simplifies our Infrastructure Management.

• Quickly replicates our infrastructure.

• Easily controls and tracks changes to our
infrastructure.

AWS CloudFormation

StackSimplify Kalyan Reddy Daida

How does CloudFormation works?

StackSimplify Kalyan Reddy Daida

• Stack Core Features
• Create Stack
• Update Stack
• Create Change Set
• Roll back

• Stack
• Managing collection of AWS resources as a single unit is

called stack.
• We can create, update, delete the collection of AWS

resources by creating, updating and deleting stacks.
• To create AWS resources, we create a stack by submitting

the template that we created, AWS CloudFormation
provisions all those resources automatically for us.

AWS CloudFormation

StackSimplify Kalyan Reddy Daida

• Change Set
• If we want to make changes to our stack, we can

update the stack.
• Before making changes to resources, we can generate

a change set, which is summary of proposed changes.
• Change sets allow us to see how our changes might

impact current running resources in a stack especially
for critical resources, before implementing them we
get an idea about the impact.

• For example: If we associate a new keypair to ec2
instance, AWS will delete the current ec2 instance
and replaces it with new ec2 instance by adding new
keypair to it.

AWS CloudFormation

StackSimplify Kalyan Reddy Daida

• Step 00: Pre-requisites
• Create Default VPC (if not present)

• Create Key pairs
• cfn-key-1

• cfn-key-2

• Gather AMI ID

• Step 01: Stack Features
• Create Stack

• Update Stack

• Create Change Sets

• Rollback

Stack Features

StackSimplify Kalyan Reddy Daida

Resources

StackSimplify Kalyan Reddy Daida

• Resources are key components of a stack.

• Resources section is a required section that need to be defined in
cloud formation template.

• Syntax

Resources

• Resources Documentation:
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-
template-resource-type-ref.html

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

StackSimplify Kalyan Reddy Daida

• Step 01: Create resource - EC2 Instance

• Step 02: Add Second Resource - New
security group and Intrinsic Function Ref

• Step 03: Update Resource Properties -
Add new rule to Security group

• Step 04: Add third Resource - Elastic IP

• Step 05: Perform case sensitive test with
resource properties

Resources

StackSimplify Kalyan Reddy Daida

• The intrinsic function Ref returns the value of the specified
parameter or resource.

• Resource Case: When we specify a resource logical name, it returns a
value that we can typically use to refer to that resource.

• Parameter Case: When we specify a parameter logical name, it
returns the value of that parameter.

• Syntax:
• Long Form

• Ref: logicalName

• Short Form
• !Ref logicalName

Intrinsic Function: Ref

StackSimplify Kalyan Reddy Daida

Parameters

StackSimplify Kalyan Reddy Daida

• Parameters: Parameters enable us to input custom values to our template
each time when we create or update stack.

• We can have maximum of 60 parameters in a cfn template.

• Each parameter must be given a logical name (logical id) which must be
alphanumeric and unique among all logical names within the template.

• Each parameter must be assigned a parameter type that is supported by
AWS CloudFormation.

• Each parameter must be assigned a value at runtime for AWS
CloudFormation to successfully provision the stack. We can optionally
specify a default value for AWS CloudFormation to use unless another value
is provided.

Parameters

StackSimplify Kalyan Reddy Daida

• Parameters must be declared and referenced within the same
template.

• We can reference parameters from the Resources and Outputs
sections of the template.

• Syntax

Parameters

StackSimplify Kalyan Reddy Daida

Parameter Properties

• AllowedPattern

• AllowedValues

• ConstraintDescription

• Default

• Description

• MaxLength

• MaxValue

• MinLength

• MinValue

• NoEcho

• Type (Mandatory)
• String

• Number

• List<Number>

• CommaDelimitedList

• AWS Specific
• AWS::EC2::Instance::Id

• AWS::EC2::VPC::Id

• List<AWS::EC2::Subnet::Id>

• Type (Mandatory)
• SSM Parameter Type

• AWS::SSM::Parameter::Name

• AWS::SSM::Parameter::Value
<String>

• AWS::SSM::Parameter::Value
<List<String>>

Parameter Types

StackSimplify Kalyan Reddy Daida

• Step 01: Create a parameter type of AWS for
KeyName property of ec2 instance.

• Step 02: Create a parameter type of string for
AvailabilityZone property of ec2 instance.

• Step 03: Create a parameter type of string for
InstanceType property of ec2 instance.

• Step 04: Create a parameter type of SSM for
InstanceType property of ec2 instance.
• Pre-requisite: Create a SSM Parameter in parameter

store.

Parameters - Practice

StackSimplify Kalyan Reddy Daida

Mappings

StackSimplify Kalyan Reddy Daida

• Mappings section matches a
key to a corresponding set of
named values.

• For example, if we want to set
values based on a region, we
can create a mapping that uses
region name as a key and
contains the values we want to
specify for each region

• We can use Fn::FindInMap
intrinsic function to retrieve
values in map.

Mappings

StackSimplify Kalyan Reddy Daida

• The intrinsic function FindInMap
returns the value corresponding to
keys in a two-level map that is
declared in Mappings section.

• Parameters
• Map Name

• Top Level Key

• Second Level Key

• Return Value

Intrinsic Function: FindInMap

StackSimplify Kalyan Reddy Daida

• Step 01: Create a Mapping to select the AMI ID for
ec2 instance property – ImageId based on region.
• Top Level Key: Region (us-east-2, us-west-1)

• Second Level Key: HVM64

• Step 02: Create a Mapping to select the instance
type based on environments (dev or prod) for ec2
instance property - InstanceType
• Top Level Key: Environment (dev, prod)

• Second Level Key: Instance Type

Mappings - Practice

StackSimplify Kalyan Reddy Daida

• Pseudo parameters are
parameters that are
predefined by AWS
CloudFormation.

• We don’t need to declare
them in our template.

• We can use them the same
way as we use parameters as
an argument for Ref function.

• Usage:

Pseudo Parameters
• AWS::AccountId

• AWS::NotificationARNs

• AWS::NoValue

• AWS::Partition

• AWS::Region

• AWS::StackId

• AWS::StackName

• AWS::URLSuffix

StackSimplify Kalyan Reddy Daida

Conditions

StackSimplify Kalyan Reddy Daida

• Conditions section contains statements that define the circumstances under
which entities are created or configured.

• Example: 1 - We can create a condition and then associate it with a
resource or output so that AWS CloudFormation only creates the resource
or output if the condition is true.

• Example:2 - We can associate the condition with a property so that AWS
CloudFormation only sets the property to a specific value if the condition is
true, if the condition is false, AWS CloudFormation sets the property to a
different value that we specify.

• We will use conditions, when we want to re-use the template in different
contexts like dev and prod environments.

• Synatx:

Conditions

StackSimplify Kalyan Reddy Daida

• Conditions are evaluated based on predefined Psuedo parameters or input
parameter values that we specify when we create or update stack.

• Within each condition we can reference the other condition.
• We can associate these conditions in three places.

• Resources
• Resource Properties
• Outputs

• At stack creation or stack update, AWS CloudFormation evaluates all
conditions in our template. During stack update, Resources that are now
associated with a false condition are deleted.

• Important Note: During stack update, we cannot update conditions by
themselves. We can update conditions only when we include changes that
add, modify or delete resources.

Conditions

StackSimplify Kalyan Reddy Daida

• We can use the below listed intrinsic functions to define conditions in
cloud formation template.
• Fn::And

• Fn::Equals

• Fn::If

• Fn::Not

• Fn::Or

• We will be covering all these functions in our practice exercises.

Conditions - Intrinsic Functions

StackSimplify Kalyan Reddy Daida

• Step 01: Create an EIP when environment is prod,
use intrinsic function Fn::Equals

• Step 02: Create a security group for dev environment
when condition is met and demonstrate Pseudo
parameter “AWS::NoValue” for when environment is
prod. Use Intrinsic function Fn::If

• Step 03: Create a security group for prod env with
prod related condition added. Use Intrinsic function
Fn::If

• Step 04: Demonstrate Intrinsic function Fn::Not

• Step 05: Demonstrate Intrinsic function Fn::Or

• Step 06: Demonstrate Intrinsic function Fn::And

Conditions - Practice

StackSimplify Kalyan Reddy Daida

Outputs

StackSimplify Kalyan Reddy Daida

• Outputs section declares output values that we can
• Import in to other stacks (to create cross-stack references)

• When using Nested stacks, we can see how outputs of a nested stack are
used in Root Stack.

• We can view outputs on the CloudFormation console

• We can declare maximum of 60 outputs in a cfn template.

• Syntax:

Outputs

StackSimplify Kalyan Reddy Daida

• Export (Optional)
• Exports contain resource output used for cross-stack reference.
• For each AWS account, Export name must be unique with in the region. As it

should be unique we can use the export name as “AWS::StackName”-ExportName
• We can’t create cross-stack references across regions.
• We can use the intrinsic function Fn::ImportValue to import values that have been

exported within the same region. We will see this practically.
• In simple terms, export availability zone in stack1 and use it stack2

• For outputs, the value of the Name property of an Export can't use Ref or GetAtt
functions that depend on a resource.

• We can’t delete a stack if another stack references one of its outputs.
• We can’t modify or remove an output value that is referenced by another stack.
• We can use Outputs in combination with Conditions. We will see that in our

practice sessions for Outputs.

Outputs

StackSimplify Kalyan Reddy Daida

• Step 01: Create a very basic output using intrinsic function
Fn::Ref - InstanceId.

• Step 02: We will use Fn::GetAtt intrinsic function to create
outputs.

• Step 03: We will use Fn::Sub intrinsic function to create
outputs and we will use Pseudo Parameter
AWS::StackName. In addition, we will export the Security
Group and Availability Zone.

• Step 04: We will create a new stack by referencing the
Security Group and Availability Zone export value from
previous stack. We will use Fn::ImportValue intrinsic
function to import those exports.

• Step 05: We will use Conditions in Outputs section to
demonstrate their combination.

• Step 06: We will demonstrate Fn::Join intrinsic function.

Outputs Practice

StackSimplify Kalyan Reddy Daida

Metadata

StackSimplify Kalyan Reddy Daida

• Metadata provides details about the cfn template.

• Syntax:

• We have three types of metadata keys which are listed below.

• Metadata Keys
• AWS::CloudFormation::Designer

• AWS::CloudFormation::Interface

• AWS::CloudFormation::Init

Metadata

StackSimplify Kalyan Reddy Daida

• AWS::CloudFormation::Designer
• Auto generated during resources drag and drop to canvas.

• AWS::CloudFormation::Interface
• Used for parameter grouping.

• AWS::CloudFormation::Init
• Used for application installation and configurations on our aws compute (EC2

instances).

• This is core and important feature of CloudFormation.

• We have one complete section outlining the end to end details of init.

Metadata Keys

StackSimplify Kalyan Reddy Daida

Metadata
AWS::CloudFormation::Designer

StackSimplify Kalyan Reddy Daida

• Designer, Visually depicts how our
resources are laid out

• Designer automatically add this
information when we use it to
create view and update templates.
Its a system generated metadata.

• It defines the information about our
resources such as their size and
relative position in template
metadata. All layout information is
stored in designer metadata.

AWS::CloudFormation::Designer

StackSimplify Kalyan Reddy Daida

• In designer we drag and drop the resources.

• When we create templates in Designer, it enforces some basic
relationships between resources to help us create valid template.

• Example: We cannot directly add EC2 instance in a VPC, we must add
a subnet in a VPC.

• We can also validate template directly in designer.

• We can bring our template which we have written manually and
validate in designer using validate template.

AWS::CloudFormation::Designer

StackSimplify Kalyan Reddy Daida

• Integrated Editor:
• We can make all our template modifications with this editor.

• It also provides the auto-complete feature that lists all property names for a
resource so we don’t need to memorize all the properties of a resource or
refer documentation.

• We can use integrated editor to convert from JSON to YAML and vice versa.

AWS::CloudFormation::Designer

StackSimplify Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

• Firstly, I write my cfn templates manually in editor by referring
documentation
• Which gives me greater confidence on that particular resource for which I am

writing template.
• I use visual studio code as my editor due to the fact that dealing with YAML

spaces is simplified in this editor. I just use tabs and VS code editor takes care
of yaml spaces.

• Copy template to Integrated Editor and Validate Template.

• Convert template from JSON to YAML or YAML to JSON.

• Drag resources to canvas and see their properties (some times).

• Copy template to Integrated Editor and review template visually on
canvas.

How I use Designer?

StackSimplify Kalyan Reddy Daida

CloudFormation Designer - Demo

StackSimplify Kalyan Reddy Daida

Metadata
AWS::CloudFormation::Interface

StackSimplify Kalyan Reddy Daida

• When we create or update stacks in
the console, the console lists input
parameters in alphabetical order by
their logical IDs.

• By using this key, we can define our
own parameter grouping and ordering
so that users can efficiently specify
parameter values.

• We can also define labels for
parameters.

• A label is a friendly name or
description that the console displays
instead of a parameter's logical ID
which helps users understand the
values to specify for each parameter.

AWS::CloudFormation::Interface
Syntax:

StackSimplify Kalyan Reddy Daida

EC2 UserData

StackSimplify Kalyan Reddy Daida

• We can use UserData in CloudFormation
template for ec2.

• We need to use a intrinsic function Fn::Base64
with UserData in CFN templates. This function
returns the Base64 representation of input
string. It passes encoded data to ec2 Instance.

• YAML Pipe (|): Any indented text that follows
should be interpreted as a multi-line scalar value
which means value should be interpreted literally
in such a way that preserves newlines.

• UserData Cons

• By default, user data scripts and cloud-init
directives run only during the boot cycle when
we first launch an instance.

• We can update our configuration to ensure that
our user data scripts and cloud-init directives run
every time we restart our instance. (Reboot of
server required)

CloudFormation & UserData

Sample:

StackSimplify Kalyan Reddy Daida

Helper Scripts

 cfn-init, cfn-hup and cfn-signal

StackSimplify Kalyan Reddy Daida

• AWS CloudFormation provides the following Python helper scripts
that we can use to install software and start services on Amazon EC2
that we create as part of stack.
• cfn-init

• cfn-signal

• cfn-get-metadata

• cfn-hup

Helper Scripts

StackSimplify Kalyan Reddy Daida

Metadata
AWS::CloudFormation::Init

StackSimplify Kalyan Reddy Daida

packages

groups

users

sources

files

commands

Metadata Format

aws-cfn-bootstrap

cfn-init

cfn-signal

outputs

Creation Policy

cfn-hup

services

Create Stack &
Test

Create Stack &
Test

Update Stack –
Deploy v2 App

Base Template

StackSimplify Kalyan Reddy Daida

• Resources
• Security Group

• VM Instnaces

• Parameters
• We will Parameterize KeyName parameter

Step 00 – Base Template

StackSimplify Kalyan Reddy Daida

• Type AWS::CloudFormation::Init will be used to
include metadata section on an ec2 instance for cfn-
init helper script.

• Configuration is separated in to sections.
• Metadata is organized in to config keys, which we can

even group in configsets.
• By default cfn-init calls and processes the metadata

section when it has single config key (No configsets
defined).

• We can even specify configsets as input to cfn-init
script so that it can process the entire configset with
all its configkeys. We will see it in detail in configsets
section.

• The cfn-init helper script processes the configuration
sections in the order specified in syntax section.

Step-01: Metadata: AWS::CloudFormation::Init

StackSimplify Kalyan Reddy Daida

• If we want to process it in different order, we need to
separate them into different config keys and then use the
order of execution for config keys in a configset.

• In this step we will just add the metadata section with
structure.

• We will incrementally build the metadata sections in
upcoming steps.

• Metadata Structure:

Step-01: Metadata: Structure

StackSimplify Kalyan Reddy Daida

• We can use packages key to
download and install pre-
packaged applications.

• On windows systems packages
key supports only the MSI
Installer.

• Supported Package Formats:
• apt
• msi
• python
• rpm
• rubygems
• yum

Step-02: Metadata: packages

• Packages with Versions:

• Our Example:

StackSimplify Kalyan Reddy Daida

• We can use groups to create Linux/Unix groups and assign to group
id’s.

• Groups key is not supported for windows systems.

• We can create multiple groups as required.

• We can create without group id or create with a desired group id.

• Syntax:

Step-03: Metadata: groups

StackSimplify Kalyan Reddy Daida

• We can use the users key to create
Linux/Unix users in EC2 Instance.

• Users key is not supported for windows
systems.

• The following are the supported keys
• uid
• groups
• homeDir

• Users are created as non-interactive
system users with a shell of /sbin/nologin.

• This is by design and cannot be modified

Step-04: Metadata: users

• Syntax

StackSimplify Kalyan Reddy Daida

• We can use the sources key to download an archive file and unpack it
in a target directory on EC2 Instance.

• This key is fully supported for both Linux and Windows systems.

• Supported Archive formats
• tar

• tar + gzip

• tar + bz2

• zip

• Syntax / Example:

Step-05: Metadata: sources

StackSimplify Kalyan Reddy Daida

• Create S3 bucket

• Disable block public access to bucket.

• Create cfn folder

• Upload the zip files demo1.zip, demo2.zip which contains demo.war (two
versions v1 and v2)
• Unzip AWS-CloudFormation.zip to local directory
• Navigate to 11-cfn-init/WAR-Files folder
• Upload the demo1.zip, demo2.zip to S3 bucket cfn folder.
• Path: /AWS-CloudFormation/11-cfn-init/WAR-files
• Make the demo1.zip, demo2.zip as public file.
• Copy the S3 http url for both files and perform public access test.
• Update demo1.zip url in sources section of template.

Step-05: Metadata: sources

StackSimplify Kalyan Reddy Daida

• We can use the files key to create files on EC2 Instance.
• The content can be either inline in the template or the content can be

pulled from a URL.
• The files are written to disk in alphabetical order.
• Supported Keys

• content
• source
• Encoding (plain or base64)
• group
• owner
• mode
• authentication
• context

Step-06: Metadata: files

StackSimplify Kalyan Reddy Daida

Step-06: Metadata: files
Syntax / Sample:

StackSimplify Kalyan Reddy Daida

• We can use commands key to execute
commands on EC2 Instance.

• The commands are processed in
alphabetical order by name.

• Supported Keys
• command

• env

• cwd

• test

• ignoreErrors

• waitAfterCompletion

Step-07: Metadata: commands

Syntax / Example:

StackSimplify Kalyan Reddy Daida

• We can use services key to define which services should be
enabled or disabled when the instance is launched.

• On Linux systems this key is supported by using sysvinit.

• On Windows systems, it is supported by using Windows Service
Manager.

• Services key also allows us to specify dependencies on sources,
packages and files so that if a restart is needed due to files being
installed, cfn-init will take care of the service restart.

• Supported Keys
• ensureRunning
• enabled
• files
• sources
• packages
• commands

Step-08: Metadata: services

StackSimplify Kalyan Reddy Daida

Step-08: Metadata: services

• The nginx service will be restarted if either
/etc/nginx/nginx.conf or /var/www/html are
modified by cfn-init.

• The php-fastcgi service will be restarted if cfn-
init installs or updates php or spawn-fcgi using
yum.

• The sendmail service will be stopped and
disabled.

StackSimplify Kalyan Reddy Daida

UserData

StackSimplify Kalyan Reddy Daida

• Helper Scripts are updated periodically.

• We need to ensure that the below listed command is included in
UserData of our template before we call the helper scripts to ensure
that our launched instances get the latest helper scripts.

Step-09: UserData: aws-cfn-bootstrap

StackSimplify Kalyan Reddy Daida

• The cfn-init helper script reads template
metadata from the AWS::CloudFormation::Init
key and acts accordingly to:
• Fetch and parse metadata from AWS

CloudFormation
• Install packages
• Write files to disk
• Enable/disable and start/stop services

• If we use cfn-init to update an existing file, it
creates a backup copy of the original file in the
same directory with a .bak extension.

• cfn-init does not require credentials. However,
if no credentials are specified, AWS
CloudFormation checks for stack membership
and limits the scope of the call to the stack
that the instance belongs to.

Step-10: UserData: cfn-init

Command Syntax:

Command Usage in UserData:

StackSimplify Kalyan Reddy Daida

• The cfn-signal helper script signals AWS
CloudFormation to indicate whether
Amazon EC2 instances have been
successfully created or updated.

• If we install and configure software
applications on instances, we can signal
AWS CloudFormation when those software
applications are ready.

• We can use the cfn-signal script in
conjunction with a CreationPolicy.

Step-11: UserData: cfn-signal

Command Syntax:

StackSimplify Kalyan Reddy Daida

• Important Note: From here on we will start creating the stack using
v12 template file, we will add cfn-hup command also to template
UserData section even though we discuss that section in step 14.
Reason for doing that is UserData related changes should be included
during instance creation time only.

• Final Look of UserData:

Step-11: UserData: cfn-hup

StackSimplify Kalyan Reddy Daida

• Add outputs in the template.

• We will add AppURL output for easily accessing the application after
stack creation.

• Sample

Step 12 - Outputs

StackSimplify Kalyan Reddy Daida

Step 12: Create Stack using template
11-12-cfn-init-v12-Outputs.yml

• Observations
• CloudFormation gets the signal as soon as VM Instance resource gets

created.

• In other words, we will see that stack status “CREATE_COMPLETE” even
though in the back ground application installations are going on in the EC2
Instance.

• With this approach we have problems like
• Applications installs fails and we see the stack status as “CREATE_COMPLETE” in green.

• We will not know what happened to our application installs or configurations until we
login to instance.

• To overcome such type of issues, we need to use “Creation Policy” which we
will see in next step (step 13).

StackSimplify Kalyan Reddy Daida

• Associate the CreationPolicy attribute with a resource to prevent its
status from reaching create complete until AWS CloudFormation
receives a specified number of success signals or the timeout period
is exceeded.

• To signal a resource we can use cfn-signal helper script.

• The creation policy is invoked only when AWS CloudFormation
creates the associated resource.

• Currently, the only AWS CloudFormation resources that support
creation policies are
• AWS::AutoScaling::AutoScalingGroup
• AWS::EC2::Instance
• AWS::CloudFormation::WaitCondition

Step-13: Creation Policy

StackSimplify Kalyan Reddy Daida

• Use the CreationPolicy attribute when you want to wait on resource
configuration actions before stack creation proceeds.

• For example, if we install and configure software applications on an
EC2 instance, we might want those applications to be running before
proceeding. In such cases, we can add a CreationPolicy attribute to
the instance, and then send a success signal to the instance after the
applications are installed and configured.

• Syntax:

Step-13: Creation Policy

StackSimplify Kalyan Reddy Daida

Step 13: Create Stack using template
11-13-cfn-init-v13-CreationPolicy.yml

• Observations
• CloudFormation waits for the status until application installs are completed

for that particular resource (in our case its VM Instance).

• Either it waits for success signal and if within specified time (time specified in
creation policy) if it didn’t get success signal it roll backs the entire stack.

StackSimplify Kalyan Reddy Daida

• cfn-hup helper is a daemon that detects changes in resource
metadata and runs user-specified actions when a change is
detected.

• This allows us to make configuration updates on our running
EC2 Instance through the Update Stack feature.

• cfn-hup.conf
• cfn-hup.conf file stores the name of the stack and the AWS

credentials that the cfn-hup daemon targets.

• Format of cfn-hup.conf

• We are creating this file using our Metadata Key named files in
our template.

Step-14: UserData: cfn-hup

• Format of cfn-hup.conf

StackSimplify Kalyan Reddy Daida

• cfn-hup.conf file content
• stack
• credential-file
• role
• region
• umask (default: 022)
• Interval (default: 15)
• Verbose

• hooks.d Directory
• To support composition of several applications deploying change notification

hooks, cfn-hup supports a directory named hooks.d that is located in the hooks
configuration directory.

• We can place one or more additional hooks configuration files in the hooks.d
directory.

Step-14: UserData: cfn-hup

StackSimplify Kalyan Reddy Daida

• User actions that cfn-hup daemon calls periodically are defined in
hooks.conf.

• Syntax:

Step-14: UserData: cfn-hup - hooks.conf

StackSimplify Kalyan Reddy Daida

• When the action is run, it is run in a copy of the current environment
(that cfn-hup is in), with CFN_OLD_METADATA set to the previous
value of path, and CFN_NEW_METADATA set to the current value.

• The hooks configuration file is loaded at cfn-hup daemon startup
only, so new hooks will require the daemon to be restarted.

• A cache of previous metadata values is stored at /var/lib/cfn-
hup/data/metadata_db

• We can delete this cache to force cfn-hup to run all post.add actions
again.

Step-14: UserData: cfn-hup - hooks.conf

StackSimplify Kalyan Reddy Daida

Step 14: Create Stack using template
11-14-cfn-init-v14-Update-App.yml

• Observations
• Old war file will be removed

• New war file will be deployed successfully.

• When we access the app new version of application content will be
displayed.

StackSimplify Kalyan Reddy Daida

Configsets

StackSimplify Kalyan Reddy Daida

• We can create more than one config key and have cfn-init process
them in a specific order.
• Single Configset

• Multiple Configset

Configsets

StackSimplify Kalyan Reddy Daida

App1AndApp2

configSets (Single)

App1 App2

Sample:

StackSimplify Kalyan Reddy Daida

SingleAppCS default

App1

DualAppCS

SingleAppCS App2

App1

DualAppCS

SingleAppCS App2

App1

configSets (Multiple)

Sample:

StackSimplify Kalyan Reddy Daida

• We will define two config keys App1 and
App2

• We will create a configSet with name as
App1AndApp2.

• First App1 config key will get executed.

• Next App2 config key will get executed.

• Order of execution will be based on how
we define them in configSets.

• Observation
• Both applications should be accessible

Step#1: Single Configset

Sample:

StackSimplify Kalyan Reddy Daida

• We have created 3 configSets
• SingleAppCS

• DualAppCS

• default

• SingleAppCS: Only App1 should be
deployed.

Step#2: Multiple configSets

Sample:

StackSimplify Kalyan Reddy Daida

• We have created 3 configSets
• SingleAppCS

• DualAppCS

• default

• DualAppCS: Both App1 and App2 should
be deployed

Step#3: Multiple configSets

Sample:

StackSimplify Kalyan Reddy Daida

• We have created 3 configSets
• SingleAppCS

• DualAppCS

• default

• default: default contains ConfigSet
DualAppCS so both apps should be
deployed. For default we don’t need to
specify “--configSets default” it will pick
automatically.

Step#4: Multiple configSets

Sample:

StackSimplify Kalyan Reddy Daida

Nested Stacks

StackSimplify Kalyan Reddy Daida

• The AWS::CloudFormation::Stack type nests a stack as a resource in a
top-level template.

• We can add output values from a nested stack within the root stack.

• We use Fn::GetAtt function with nested stacks logical name and the
name of the output value in nested stack

• Syntax:

Nested Stacks

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Create Templates

• Create Parameters
• Create Metadata
• Create Resources

• Create VPC
• Create Subnets
• Create Route Table
• Associate Subnet &

Route Table
• Create IGW
• Associate IGW to

VPC
• Create Route

• Create Outputs
• Test Template
• Upload to S3

• Create Parameters
• Create Resources

• Create VPC Stack
• Create EC2 Instance

• Create Outputs

VPC Nested Stack Template
Root Stack Template

Step#1: Step#2: Step#0:

• Create S3 bucket
• This is required for

uploading the Nested
stack templates to S3

S3 Bucket

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Create Stack
Root Stack

VPC Nested
Stack

• Create Root Stack
• It automatically creates

the vpc nested stack

For VPC Nested Stack Step#3:

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Create Templates

• Create Parameters
• Create Resources

• Create VPC Stack
• Create EC2 Instance

• Create Outputs
• Create Resource

• Create Security
Group Stack

• Update VM
Instance resource
with security group

Root Stack Template

• Create Parameters
• Create Resources

• Create Security
Group

• Create Outputs

Security Group Nested
Stack Template

Step#4 Step#5

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Update Stack
Root Stack

VPC Nested
Stack

• Create Root Stack
• It automatically creates

the vpc nested stack

Security Group
Nested Stack

• Update Root Stack with new
template.

• It automatically creates the security
group nested stack

For VPC Nested Stack For Security Group Nested Stack Step#6:

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Update Stack 2
Root Stack

VPC Nested
Stack

• Create Root Stack
• It automatically creates

the vpc nested stack

Security Group
Nested Stack

• Update Root Stack with new
template.

• It automatically creates the security
group nested stack

• Update SG nested
stack with new
security rule.

• Upload the new
template to S3

• Update Root Stack
with existing
template.

For Nested Stack Updates

For VPC Nested Stack For Security Group Nested Stack

Update Stack

• Highly Recommended Approach
• Always perform updates from Root

Stack
• Never update nested stacks directly.

Step#7:

StackSimplify Kalyan Reddy Daida

Nested Stacks – Practice – Delete Stack
Root Stack

VPC Nested
Stack

Security Group
Nested Stack

• Recommendations
• Always delete root stack.
• Never delete nested stacks directly.
• Whenever we delete the root stack

associated nested stacks will get
deleted automatically.

Always Delete Root Stack

Step#8:

StackSimplify Kalyan Reddy Daida

• A nested stack is a stack that you create within another stack by using the
AWS::CloudFormation::Stack (p. 954) resource. With nested stacks, you
deploy and manage all resources from a single stack.

• You can use outputs from one stack in the nested stack group as inputs to
another stack in the group. This differs from exporting values.

• If you want to isolate information sharing to within a nested stack group,
we suggest that you use nested stacks. To share information with other
stacks (not just within the group of nested stacks), export values.

• For example, you can create a single stack with a subnet and then export its
ID. Other stacks can use that subnet by importing its ID; each stack doesn't
need to create its own subnet. Note that as long as stacks are importing the
subnet ID, you can't change or delete it.

Nested Stacks vs Outputs - Pending

StackSimplify Kalyan Reddy Daida

Continuous Integration

&

Continuous Delivery

CodeBuild CodeCommit CodeDeploy CodePipeline CloudWatch Simple Notification Service Amazon EC2

StackSimplify Kalyan Reddy Daida

• Deployment to

production

environments

• Monitor code in

production to

quickly detect

errors

Source

• Check-in source

code

• Peer review new

code

Build Production Test

• Deployment to

production

environments

• Monitor code in

production to

quickly detect

errors

• Compile Code &

build artifacts (war

files)

• Unit Tests

• Integration tests

with other

systems.

• Load Testing

• UI Tests

• Security Tests

Stages in Release Process

StackSimplify Kalyan Reddy Daida

Stages in Release Process

Source Build Production Test

StackSimplify Kalyan Reddy Daida

Continuous Integration

Source Build Production Test

• Automatically kick off a new release when new code is checked- in

• Build and test code in a consistent, repeatable environment

• Continually have an artifact ready for deployment

StackSimplify Kalyan Reddy Daida

Continuous Delivery

Source Build Production Test

• Automatically deploy new changes to staging environments for testing

• Deploy to production safely without affecting customers

• Deliver to customers faster

• Increase deployment frequency, and reduce change lead time and change failure

rate

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWS CodeCommit AWS CodeBuild AWS CodeDeploy AWS X-Ray
Amazon

CloudWatch

AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWS CodeCommit AWS CodeBuild AWS CodeDeploy AWS X-Ray
Amazon

CloudWatch

AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Source

AWS Developer Tools or AWS Code Services

Build Test Deploy Monitor

CodeBuild + Third Party CodeCommit CodeBuild CodeDeploy AWS X-Ray CloudWatch

• Fully managed build service, Compiles
source code, Runs tests and produces
software packages

• Scales continuously and processes multiple
builds concurrently.

• No build servers to manage.
• Pay by minute, only for compute resources

we use.
• Monitor builds through CloudWatch events.
• Supports following programming language

runtimes Ruby, Python, PHP, Node, Java,
Golang, .Net Core, Docker and Android

• Automates code deployments
to any instance and Lambda
• Avoids downtime during
application deployment
• Roll back automatically if
failure detected
• Deploy to Amazon EC2,
Lambda, or on-premises servers

• Version control
service
• We can privately
store and manage
source code
• Secure & highly
available

• Monitors Source
check-ins and triggers
builds
• Monitors builds
• Monitors
Infrastructure
• Collects logs

CodePipeline

• Continuous delivery service for fast and reliable
application updates

• Model and visualize your software release process
• Builds, tests, and deploys your code every time there

is a code change
• Integrates with third-party tools and AWS

StackSimplify Kalyan Reddy Daida

• Build a simple rest service using Java Spring
Boot.

• Check-in code to Local Repo and push to
CodeCommit.

CodeCommit

AWS CodeCommit

AWS Cloud

Local Git
Repo

push

Developer

StackSimplify Kalyan Reddy Daida

CodeBuild – AWS Web Console

AWS Cloud

Developer

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

CodeBuild Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

Local Git
Repo

CodeBuild – AWS CloudFormation

StackSimplify Kalyan Reddy Daida

AWS Cloud

Developer

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

CodeDeploy

Internet

User
accessing

Rest service

EC2 Instance

CodeDeploy Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

CodeDeploy

Internet

User
accessing

Rest service

CodeDeploy
Service Role Staging EC2 Instance

Production EC2
Instance

EC2 Apps Stack

Role for EC2
Instance Profile

Local Git
Repo

CodeDeploy – AWS Web Console CodeDeploy – AWS CloudFormation

StackSimplify Kalyan Reddy Daida

CodePipeline – AWS Web Console

AWS Cloud

Local Git
Repo

Developer

push

CodeCommit CodeBuild Simple Storage
Service (S3)

CodeDeploy EC2
Instance

CloudWatch

CodePipeline

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD CloudFormation Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodeDeploy

CodePipeline

Simple Notification
 Service

CodeDeploy

Staging EC2
Instance

Production EC2
Instance

EC2 Apps CloudFormation Stack

Authorized
 Approver

CodePipeline – AWS CloudFormation

Role for EC2
Instance Profile

StackSimplify Kalyan Reddy Daida

• Region: us-east-2 (ohio)
• In templates, EC2 Instnace ImageID is hardcoded to this region (Amazon

Linux AMI). If you want to test in other regions, please update the templates
with ImageId equivalent to that respective region.

• Default VPC
• Ensure we have the default VPC created in the region where we are using

these templates.

Pre-requisites

StackSimplify Kalyan Reddy Daida

EC2 CloudFormation

Stack

StackSimplify Kalyan Reddy Daida

• Step 1: Create Security Group
with port 22 and 8080 rules for
inbound access.

• Step 2: Create two EC2 Instances
• Staging

• Production

• Update UserData

• Step 3: Create Instance Profile
Role and Instance Profile for EC2
Instances to access S3 Buckets.

• Step 4: Create stack and verify.

EC2 CloudFormation Stack

Staging EC2
Instance

Production EC2
Instance

EC2 Apps CloudFormation Stack

Security group

AWS Cloud

VPC

Role for EC2
Instance Profile

Default VPC

Port 22 & 8080

StackSimplify

AWS CodeCommit

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

• Version Control Service hosted by AWS

• We can privately store and manage documents, source code, and
binary files

• Secure & highly scalable

• Supports standard functionality of Git (CodeCommit supports Git
versions 1.7.9 and later.)

• Uses a static user name and password in addition to standard SSH..

AWS CodeCommit - Introduction

StackSimplify Kalyan Reddy Daida

CodeCommit – Integration with AWS Services

AWS CodeCommit

AWS CodeStar AWS CodeBuild AWS CodePipeline AWS Cloud9 AWS Amplify AWS CloudFormation

Amazon CloudWatch AWS CloudTrail AWS Elastic Beanstalk AWS Key Management
Service

Amazon Simple Notification
Service

StackSimplify Kalyan Reddy Daida

• Step#1: Sample Spring Boot Rest Application
• Pre-requisites

• Install STS IDE

• Create Spring boot rest application.
• Test it.

• Step#2: GIT Repository
• Create a local git repository and check-in code.
• Create a remote git repository in AWS Code Commit.
• Create Code Commit git credentials to connect.
• Push the code to remote git repository.
• Verify code in AWS Code Commit.

• Step#3: CodeCommit Features
• Code, Commits, Branches
• Settings: Notifications, Triggers
• Pull Requests

CodeCommit - Steps

AWS CodeCommit

AWS Cloud

Local
Git

Repo

push

Developer

StackSimplify

AWS CodeBuild

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

CodeBuild – AWS Web Console

AWS Cloud

Developer

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

CodeBuild Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

Local Git
Repo

CodeBuild – AWS CloudFormation

StackSimplify Kalyan Reddy Daida

• CodeBuild is a fully managed build service in the cloud.

• Compiles your source code, runs unit tests, and produces artifacts
that are ready to deploy.

• Eliminates the need to provision, manage, and scale your own build
servers.

• It provides prepackaged build environments for the most popular
programming languages and build tools such as Apache Maven,
Gradle, and more.

• We can also customize build environments in CodeBuild to use
ourown build tools.

• Scales automatically to meet peak build requests.

CodeBuild - Introduction

StackSimplify Kalyan Reddy Daida

How to run CodeBuild? How CodeBuild works?

StackSimplify Kalyan Reddy Daida

AWS CodeBuild

AWS CodeCommit
Amazon Simple Storage

Service (S3) GitHub GitHub Enterprise Bitbucket

Source

Amazon Simple Storage
Service (S3)

Artifacts

Amazon EC2 Container
Registry

Managed Image

External
Container
Registry

Environment

Amazon CloudWatch

Logs

AWS CodeBuild Architecture

Amazon Simple Notification
Service

Notifications

StackSimplify Kalyan Reddy Daida

• Step#1: Create CodeBuild Project
• Create a S3 bucket and folder
• Create CodeBuild project
• Start build, Verify build logs, Verify build

phase details

• Step#2: buildspec.yml & Start Build
• Create buildspec.yml and check-in code
• Start build, Verify build logs, Verify build

phase details
• Download the artifacts from S3, unzip and

review
• Run one more build and see versioning in S3.

• Step#3: Create Build Notifications
• Create state change notification
• Create Phase change notification

CodeBuild - Steps

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit

AWS CodeBuild Simple Storage
Service (S3)

StackSimplify

AWS CodeBuild
using

CloudFormation

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

• Step 1 : Create S3 bucket and enable versioning
or use existing bucket.

• Step 2: Create buildspec.yml in our rest
application and check-in code

• Step 3: Create CodeBuild Stack Template
• Create CodeBuild Role.
• Create CodeBuild project.
• Parameters

• Step 4: Create Stack and Test the build.
• Click on Start Build
• Verify logs
• Verify artifacts in S3.

CodeBuild – CloudFormation Steps

CodeBuild Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

StackSimplify

AWS CodeDeploy

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

AWS CodeDeploy

Amazon EC2

EC2 Auto Scaling

On-Premise

AWS Lambda

Amazon ECS

Compute Platform

• CodeDeploy is a deployment service that
automates application deployments to
• EC2 instances
• On-premises instances
• AWS Lambda
• AWS ECS

• We can deploy unlimited variety of application
content
• code
• serverless AWS Lambda functions
• web and configuration files
• executables
• packages
• scripts
• multimedia files

CodeDeploy - Introduction

StackSimplify Kalyan Reddy Daida

• Benefits
• We can rapidly release new features.

• Update AWS Lambda function versions.

• Avoid downtime during application deployment.

• Reduces the complexity of updating applications when compared to error-
prone manual deployments.

• Service scales with our infrastructure so we can easily deploy to one instance
or thousands.

CodeDeploy - Introduction

StackSimplify Kalyan Reddy Daida

AWS CodeDeploy

Amazon EC2

EC2 Auto
Scaling

On-Premise

Compute Platform

Elastic Load
Balancing (ELB)

Amazon Simple Storage
Service (S3)

GitHub

Revision Type / Source

CodeDeploy - When compute is EC2/On-Premise

StackSimplify Kalyan Reddy Daida

• Step#1: Create CodeDeploy pre-requisite roles
• Create a service role for codeDeploy.
• Create an IAM Instance profile.

• Step#2: Create a EC2 VM
• Create EC2 VM
• During creation associate IAM instance profile.
• Discuss about “Userdata” containing tomcat and codeDeploy Agent

• Step#3: Create codeDeploy objects
• Create Application
• Create Deployment Group
• Create Deployment

• Step#4: Create codeDeploy files and scripts
• Create appspec.yml
• Create scripts (before_install script, after_install script, Start up

script, Shutdown script) and check-in

• Step#5: Run CodeBuild and Create Deployment

• Step#6: Verify Deployment
• Verify the deployment Events
• Verify the tomcat deployment
• Verify the codeDeploy agent log
• Verify by accessing app

• Step#7: New App Release: Make change to Application and re-
deploy

CodeDeploy - Steps

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit

AWS CodeBuild Simple Storage
Service (S3)

AWS CodeDeploy Amazon EC2
Instance

Internet

User
accessing

Rest service

StackSimplify

AWS CodeDeploy
using

CloudFormation

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

• Step 1 : Discuss about appspec.yml and
scripts.

• Step 2: Create CodeDeploy service role

• Step 3: Create CodeDeploy Application

• Step 4: Create CodeDeploy Deployment
Group and also change CodeBuild packaging
to ZIP.

• Step 5:Create stack and verify the following
• Application
• Deployment Group

• Step 6: Create CodeDeploy Deployment
• Create Deployment Object
• Run CodeBuild and Verify S3 for ZIP
• Update Stack
• Verify Deployment
• Access Application

CodeDeploy Stack

Local Git
Repo

push

CodeCommit

CodeBuild Simple Storage
Service (S3)

Developer

AWS Cloud

CodeBuild
Service Role

CodeDeploy – CloudFormation Steps

CodeDeploy

Internet

User
accessing

Rest service

CodeDeploy
Service Role Staging EC2 Instance

Production EC2
Instance

EC2 Apps Stack

Role for EC2
Instance Profile

StackSimplify

AWS CodePipeline

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

AWS CodePipeline

AWS CodeCommit

Amazon EC2 Container
Registry

Simple Storage
Service (S3)

GitHub

AWS CodeBuild

Jenkins

AWS CloudFormation

AWS CodeDeploy

AWS Elastic Beanstalk

AWS Service Catalog

Amazon Elastic Container
Service

Amazon Elastic Container
Service (Blue/Green)

Simple Storage
Service (S3)

Source Build Deploy

Amazon CloudWatch

GitHub Webhooks

Monitor Source Changes

StackSimplify Kalyan Reddy Daida

Continuous Delivery

©Amazon

StackSimplify Kalyan Reddy Daida

• AWS CodePipeline is a continuous delivery service to model,
visualize, and automate the steps required to release your software.

• Benefits
• Automate your release processes.

• Establish a consistent release process.

• Speed up delivery while improving quality.

• Supports external tools integration for source, build and deploy.

• View progress at a glance

• View pipeline history details.

CodePipeline - Introduction

StackSimplify Kalyan Reddy Daida

CodePipeline - Steps

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit AWS CodeBuild Simple Storage
Service (S3)

AWS CodeDeploy Amazon EC2
Instance

Amazon CloudWatch

AWS CodePipeline

• Step#1: Create
Pipeline
• Artifacts: S3
• Source: CodeCommit
• Build: CodeBuild
• Deploy: CodeDeploy
• Server: EC2 Instance

• Step#2: Make
changes & Check-In
Code
• Make changes to rest

app and check-in
• Pipeline should

trigger the build
automatically.

StackSimplify Kalyan Reddy Daida

• Step#1: Create new EC2 Instance with tag name as prod

• Step#2: Create new deployment group for prod

• Step#3: Create Manual Approval stage in CodePipeline

• Step#4: Create Prod Deployment stage in CodePipeline .

• Step#5: Check-in changed code to trigger pipeline and monitor the
pipeline process.

CodePipeline – Manual Approval & Prod Deployment

StackSimplify

AWS CodePipeline
using

CloudFormation

Kalyan Reddy Daida

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD CloudFormation Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodeDeploy

CodePipeline

Simple Notification
 Service

CodeDeploy

Staging EC2
Instance

Production EC2
Instance

EC2 Apps CloudFormation Stack

Authorized
 Approver

Continuous Integration & Continuous Delivery using CloudFormation

StackSimplify Kalyan Reddy Daida

• Step 1: Create CodePipeline role

• Step 2: Create Pipeline stages for staging deployment
• Stage 1: Source Stage
• Stage 2: Build Stage
• Stage 3: Deploy To Staging

• Step 3: Create stack and verify the following
• Stages: Source, Build, Deploy to Staging
• Access Application in staging

• Step 4: From IDE make changes to rest app and check-in code and verify the
following
• Stages: Source, Build, Deploy to Staging
• Access Application in staging

CodePipeline – CloudFormation Steps

StackSimplify Kalyan Reddy Daida

• Step 5: Create SNS Topic and its equivalent parameter and add Production DeploymentGroup

• Step 6: Create Pipeline stages for Production deployment
• Stage 4: Production email Approval
• Stage 5: Deploy To Production

• Step 7: Create stack and verify the following
• Confirm SNS Subscription in email
• Stages: Source, Build, Deploy to Staging, Production email approval and Deploy to

production.
• Access Application in staging and production

• Step 8: From IDE make changes to rest app and check-in code and verify the
following
• Stages: Source, Build, Deploy to Staging, Production email approval and Deploy to

production.
• Access Application in staging and production

CodePipeline – CloudFormation Steps

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

using

AWS CloudFormation

and

AWS Web Console

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

Source Build Production Test

Source Stage Build Stage Test Stage Prod Stage

AWS CodeCommit AWS CodeBuild AWS CodePipeline AWS CodePipeline

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

Source Build Production Test

Source Stage Build Stage Test Stage Prod Stage

Master Branch Prepare or Validate
Template

Create & Execute
Change set

Create & Execute
Change set

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

Source Build Production Test

• Track Infrastructure changes using version control system like AWS CodeCommit.

• Release infrastructure changes using the same tools as code changes (AWS CodeCommit, CodeBuild and CodePipeline).

• Replicate production environment in any environment as desired for continuous testing.

• Make infrastructure changes repeatable.

• Minimize infrastructure buildout time.

• Seamless provisioning and de-provisioning of infrastructure resources in minutes or even reduced to seconds.

Benefits

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Manual AWS Web Console

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – CFN Template creation Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Execution Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

using

AWS Developer Tools

on

AWS Web Console

StackSimplify Kalyan Reddy Daida

• We will create a VPC CloudFormation stack using AWS CodePipeline.
• Manage the AWS VPC infrastructure components like Subnets, Routes,

Route Tables everything with AWS Developer Tools and CloudFormation.
• Any changes to vpc infra, we will change the vpc.yml cfn template and

check-in the code to AWS CodeCommit.
• CodePipeline will trigger pipeline and push the changes to staging VPC

Stack.
• CodePipeline creates a Change Set for production.
• Approve the Change set using SNS notification
• Changes will be pushed to production VPC Stack after approval.
• Finally we will achieve Continuous Integration, Continuous Delivery &

Infrastructure as code after this usecase implementation.

Usecase

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Manual AWS Web Console

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

• Step 1: Understand about the VPC source files.
• vpc.yml
• vpc-config.json
• buildspec.yml

• Step 2: Create CodeCommit repository vpcrepo and check-in vpc source files.

• Step 3: Create a pipeline with source and build stages.
• Build stage fails and we will understand the causes of failure and fix it.
• Create a CFN policy with validate CFN template permission and associate to CodeBuildRole.
• Rerun the pipeline.
• Build stage should pass now.

• Step 4: Create a Test Stage which creates TestVPCStack
• Role#1: Create CFN full access policy and associate it with CodePipeline role
• Role#2: Create CFN VPC full access Role by associating “VPC Full Access policy” which is required by

CloudFormation to create the VPC Stack.
• Create Pipeline stage named VPCTest
• Click “Release Change” after stage creation and verify the stack got created in CFN Console.

Infrastructure as Code – Manual AWS Web Console

StackSimplify Kalyan Reddy Daida

• Step 5: Create Prod Stage
• Pre-requisite: Create SNS Topic
• Action#1: Create Prod Change Set
• Action#2: Create Prod Approval
• Action#3: Create Execute Change Set
• Verify the stack got created in CloudFormation console.

• Step 8: Update vpc.yml with new subnet (subnet02) and check-in file to
CodeCommit
• Verify the pipeline stages

• Source, Build, VPCStage
• VPCProd

• Create Change Set
• Prod Approval
• Execute Change Set

• Verify the same in VPC

Infrastructure as Code – Manual AWS Web Console

StackSimplify Kalyan Reddy Daida

Infrastructure as Code

using

AWS CloudFormation

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – CFN Template creation Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

CI CD IAC Pipeline Stack

CodeCommit CodeBuild Simple Storage
Service (S3)

CodePipeline

Simple Notification
 Service

Staging VPC Stack

Authorized
 Approver

Infrastructure as Code – Execution Flow

CodeBuild
Service Role

CodePipeline
Role

CloudFormation
Role

Prod VPC Stack

VPC

Internet
gateway Route table

Subnet

VPC

Internet
gateway Route table

Subnet

Create
Change set

Action-1:

Prod
Approval

Action-2:

Action-3:

Execute
Change set

Create
Stack

Action-1:

Source Stage

Test Stage

Build Stage

Prod Stage

StackSimplify Kalyan Reddy Daida

• Step 1: Understand about the VPC source files.
• vpc.yml
• vpc-config.json
• buildspec.yml

• Step 2: Create CodeCommit repository vpcrepo and check-in vpc source
files. (Note: check-in base vpc.yml and vpc-config.json)

• Step 3: Create a CodeBuild related template objects
• Create Parameters (Repo Name, Artifact storage bucket)
• Create CodeBuild Role
• Create CodeBuild Project

• Step 4: Create Other roles
• Create CodePipeline Role
• Create CloudFormation Role

Infrastructure as Code – CloudFormation Pipeline

StackSimplify Kalyan Reddy Daida

• Step 5: Crete Pipeline stages
• Source Stage
• Build Stage
• Test Stage

• Step 6: Create Pipeline stage and actions for production
• Create SNS Topic Resource
• Create Parameter for email notifications.
• Prod Stage

• Action-1: Create Change Set
• Action-2: Prod Approval
• Action-3: Execute Change Set

• Step 7: Add subnet02 in vpc.yml and verify the pipeline end to end.

Infrastructure as Code – CloudFormation Pipeline

StackSimplify Kalyan Reddy Daida

Thank You

