
StackSimplify

Master RESTful API using Spring Boot 2

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• Goal: We are going to use a single
project and incrementally build it by
adding each feature in a orderly
manner by creating separate git
branches for each feature.
• After the completion of course

github is going to look this way.
• Project Link:

https://github.com/stacksimplify/spr
ingboot-buildingblocks

Course Objectives

https://github.com/stacksimplify/springboot-buildingblocks

StackSimplifyKalyan Reddy Daida

Spring Boot 2
RESTful

API

2. Github & HelloWorld

3. RESTful APIs with
Spring Data JPA & H2

4. Exception Handling with
ResponseStatusException

5. Validations & Global
Exception Handler

6. JPA OneToMany
Association

7. Spring Boot - HATEOAS

8. Spring Boot
Internationalization

9. Spring Boot Filtering

10. Spring Boot – DTOS
Data Transfer Objects

11. Spring Boot – Versioning
& Content Negotiation

12. Spring Boot –
Swagger Integration

13. Spring Boot –
Actuator & Admin

14. Spring Boot –Actuator
& Micrometer

1. Introduction to Spring
Boot 2 RESTful APIs

StackSimplify

Development
Environment
Setup

Development Environment

Spring Boot

StackSimplifyKalyan Reddy Daida

GitHub:
https://github.com/stacksimplify/springboot-

buildingblocks

https://github.com/stacksimplify/springboot-buildingblocks

StackSimplify

Development
Environment
Setup

RESTful API
Introduction

Spring Boot

StackSimplifyKalyan Reddy Daida

• REST stands for Representational State Transfer
• Restful Web Services is a stateless client-server architecture where

web services are resources and can be identified by their URIs.
• REST Client applications can use HTTP GET/POST/PUT/DELETE ..

methods to invoke Restful web services.
• Lightweight and doesn’t follow any standards unlike SOAP

Webservices.

RESTful Webservices

StackSimplifyKalyan Reddy Daida

• SOAP is a protocol
• SOAP server and client

applications are tightly coupled
and bind with the WSDL contract.
• Learning curve is little complex

for SOAP web services.
• Rigid type checking, binds to a

contract.
• SOAP works with XML only.

SOAP vs REST

• REST is an architectural style.
• There is no contract in REST web

services and client application
consuming REST API.
• Learning curve is easy for REST

when compared to SOAP.
• Human readable results.
• REST web services request and

response types can be XML,
JSON, text etc..

StackSimplify

Development
Environment
Setup

Manage via Github
&

HelloWorld

Spring Boot

StackSimplifyKalyan Reddy Daida

• Step-01: Create Spring boot base project from start.spring.io
• Step-02: Introduction for managing spring boot projects via github
• Step-03: Github Base Setup
• Step-04: Add GIT Repository to Spring Tool Suite IDE - GIT Perspective
• Step-05: Create a Simple HelloWorld RESTful API which returns a String
• Step-06: Create a Simple Hello World REST Service which returns a Bean

(JSON)
• Step-07: GIT Commit & Push Hello World RESTful service changes to Github

Implementation Steps

StackSimplify

Development
Environment
Setup

RESTful APIs
using

Spring Data JPA
&

H2 Database

Spring Boot

StackSimplifyKalyan Reddy Daida

• Step-01: Usecase Introduction
• Step-02: Verify pom.xml for all Dependencies
• Step-03: Update application.properties required for JPA based

RESTful Services
• Step-04-01: Create User Entity - Understand @Entity Annotation
• Step-04-02: Create User Entity - Understand @Table Annotation
• Step-04-03: Create User Entity - Define Variables, Getters & Setters
• Step-05: Understand and Implement changes related to H2 Database
• Step-06: Create User Repository - @Repository

Implementation Steps

StackSimplifyKalyan Reddy Daida

• Step-07: Implement getAllUsers RESTful Service - @Service,
@RestController
• Step-08: Test getAllUsers RESTful Service - Using REST Client POSTMAN
• Step-09: Implement createUser RESTful Service - @PostMapping
• Step-10: Implement getUserById RESTful Service - @GetMapping
• Step-11: Implement updateUserById RESTful service - @PutMapping
• Step-12: Implement deleteUserById RESTful Service - @DeleteMapping
• Step-13: Implement getUserByUsername RESTful Service - @GetMapping
• Step-14: GIT Commit, Push, Merge to Master and Push

Implementation Steps

StackSimplify

Development
Environment
Setup

Exception Handling
&

Response Status Codes

StackSimplifyKalyan Reddy Daida

• Spring5 introduces the ResponseStatusException class which is a fast way
for basic error handling in our RESTful API’s.
• It is an alternative to @ResponseStatus and is the base class for exceptions

used for applying status code to an HTTP Response.
• We can create an instance of it providing an HttpStatus and optionally a

reason and a cause.
• It’s a RuntimeException.
• ResponseStatusException constructor arguments

• status - an HTTP Status set to HTTP response
• reason – a message explaining the exception set to that particular HTTP response
• cause – a Throwable cause of the ResponseStatusException

ResponseStatusException Class

StackSimplifyKalyan Reddy Daida

• Benefits
• We can implement it quite fast.
• There is no specific need for creating custom exception classes, unless we have a

need because we can define HTTP Response Status code and Error message at a
time.

• As we are creating exceptions programmatically, we will have more control over
exception handling.

• Downside
• Code Duplication: As we are defining them programmatically, we find ourselves

replicating code in multiple controllers.
• Global Exception Handling: This approach will not look like a global approach like

@ControllerAdvice. Its difficult to enforce application-wide conventions.
• Combine Approaches

• We can implement @ControllerAdvice globally and ResponseStatusExceptions
locally as and when required.

ResponseStatusException Class

StackSimplifyKalyan Reddy Daida

• Step-00: Create a git branch for Exception Handling.
• Step-01: Implement “ResponseStatusException” for getUserById

service.
• Step-02: Implement “ResponseStatusException” for updateUserById

service.
• Step-03: Implement “ResponseStatusException” for deleteUserById

service directly at Service Layer.
• Step-04: Implement “ResponseStatusException” for createUser

service.
• Step-05: Implement HTTP Status code – 201 created and Location

header with user path for createUser Service.

Implementation Steps

StackSimplify

Development
Environment
Setup

Validations
&

Global Exception Handling

Spring Boot

StackSimplifyKalyan Reddy Daida

• Validating user input is a very common & key requirement in today’s world,
Spring Boot provides strong support out of the box.
• Spring Boot supports seamless integration with custom validators but the

de-facto for performing validation is Hibernate Validator
(http://hibernate.org/validator/).
• JSR 380: JSR 380 is a specification of the Java API for bean validation, which

ensures that properties of a bean meet specific criteria, using annotations
such as @NotNull, @Min, and @Max.
• @Valid Annotation: When Spring Boot finds an argument annotated

with @Valid, it automatically bootstraps the default JSR 380
implementation (Hibernate Validator) and validates the argument. When
the target argument fails to pass the validation, Spring Boot throws
a MethodArgumentNotValidException exception.
• Bean Validation 2.0 Specification - https://beanvalidation.org/2.0/

Validations

http://hibernate.org/validator/
https://beanvalidation.org/2.0/

StackSimplifyKalyan Reddy Daida

• @NotNull: Validates that the annotated property value is not null
• @Size: Validates that the annotated property value has a size between the

attributes min and max
• @Min: Validates that the annotated property has a value no smaller than

the value attribute
• @Max: Validates that the annotated property has a value no larger than

the value attribute
• @Email: Validates that the annotated property is a valid email address
• @NotBlank: Validate that the property is not null or whitespace
• @NotEmpty: Validates that the property is not null or empty
• @AssertTrue: Validates that the annotated property value is true.

Commonly used - Validation Annotations

StackSimplifyKalyan Reddy Daida

• @ControllerAdvice
• Allows us to write global code that can be applied to a wide range of controllers.
• By default @ControllerAdvice annotation will be applicable to all classes that use

@Controller which also applies for @RestController.
• @ExceptionHandler

• Annotation for handling exceptions in specific handler classes and/or handler
methods.

• If used with controllers directly, we have the need to define it per controller but
when used in combination with @ControllerAdvice it will be only used in Global
Exception Handler class but applicable to all controllers due to @ControllerAdvice.

• @RestControllerAdvice
• @RestControllerAdvice is the combination of

both @ControllerAdvice and @ResponseBody.
• We can use the @ControllerAdvice annotation for handling exceptions in

the RESTful Services but we need to add @ResponseBody separately.

Global Exception Handling

StackSimplifyKalyan Reddy Daida

• @ControllerAdvice & ResponseEntityExceptionHandler class
• MethodArgumentNotValidException
• HttpRequestMethodNotSupportedException

• @ControllerAdvice & @ExceptionHandler
• For pre-defined exceptions like ConstraintViolationException
• For custom exceptions like UserNameNotFoundException

• @RestControllerAdvice & @ExceptionHandler
• For custom exceptions like UserNameNotFoundException
• For pre-defined exceptions like “Exception.class” (Applicable to all

exceptions)

Usecase Combination

StackSimplifyKalyan Reddy Daida

• Step-00: Create git branch for Validations & Global Exception Handler.
• Step-01: Implement Bean Validation
• Step-02: Implement Custom Global Exception Handler using @ControllerAdvice

& ResponseEntityExceptionHandler
• implement exception handler for MethodArgumentNotValidException.

• Step-03: Implement exception handler for
HttpRequestMethodNotSupportedException.
• Step-04: Implement exception handler for custom exception like

UserNameNotFoundException.
• Step-05: Path Variables Validation & implement exception handler for

ConstraintViolationException.
• Step-06: Implement Global Exception Handling using @RestControllerAdvice

Implementation Steps

StackSimplify

Development
Environment
Setup

JPA
@OneToMany
@ManyToOne

Spring Boot

StackSimplifyKalyan Reddy Daida

• In JPA, one-to-many database association can be represented either
through a @ManyToOne or @OneToMany association or both. All
depends on our requirement and need.
• @ManyToOne annotation allows us to map the Foreign Key column

in the child entity mapping so that child has an entity object
reference to its parent entity. This is the most efficient way.
• We can perform the associations in below listed 3 ways.
• Unidirectional @OneToMany association
• Bidirectional @OneToMany association
• Unidirectional @ManyToOne with JPQL query

• We are going to use Bidirectional association in our implementation.

JPA - @OneToMany & @ManyToOne

StackSimplifyKalyan Reddy Daida

• Get All orders of a User
• Method Name: getAllOrders
• GET /users/{userid}/orders

• Create an order for a user
• Method Name: createOrder
• POST /users/{userid}/orders

• Get order details using orderid and userid
• Method Name: getOrderByOrderId
• GET /users/{userid}/orders/{orderid}

Usecase Introduction

StackSimplifyKalyan Reddy Daida

• Step-01: Create GIT branch for JPA one-to-many association
• Step-02: Create Order entity and @ManyToOne association
• Step-03: Update User entity with @OneToMany association
• Step-04: Implement getAllOrders method
• Step-05: Implement createOrder method
• Step-06: Implement getOrderByOrderId method (Assignment)
• Step-07: GIT commit code, push to remote, merge to master and

push to remote

JPA - @OneToMany - Implementation Steps

StackSimplify

Development
Environment
Setup

HATEOAS

Hypermedia As The Engine
Of Application State

Spring Boot

StackSimplifyKalyan Reddy Daida

• HATEOAS is an extra level upon REST.
• It is used to present information about

a REST API to a client without the need
to bring up the API documentation.
• It includes links in a returned response

and client can use those API links to
further communicate with the server.
• Simplify the client by making the API

discoverable.
• This reduces the likelihood of client

breaking due to changes to the
service. How?

Spring Boot HATEOAS
Service: getAllUsersHateoas

StackSimplifyKalyan Reddy Daida

Spring Boot HATEOAS – API Discovery

API – A
Links

http://host/B
http://host/C
http://host/E

API – B
Links

http://host/D
http://host/E

API – C
Links

http://host/F
http://host/G

API – F
Links

http://host/J

API – G
Links

http://host/K

API – E
Links

http://host/I

API – D
Links

http://host/H

API Client

StackSimplifyKalyan Reddy Daida

• Spring HATEOAS provides three abstractions for creating the URI
• Resource Support
• Link
• ControllerLinkBuilder

• We can use these to build the API URL’s and associate it to the
resource.
• We extend entities (User, Order) from the Resource Support class to

inherit the add() method.
• Once we create a link, we can easily associate that link to a resource

representation without adding any new fields to the resource or
without writing huge amount of manual boilerplate code.

Spring Boot HATEOAS

StackSimplifyKalyan Reddy Daida

• Step-00: Create git branch for Spring Boot HATEOAS
• Step-01: Add HATEOAS dependency in pom.xml
• Step-02: Extend both Entities to ResourceSupport
• Step-03: Create new User and Order Controllers for HATEOAS Implementation

• UserHateoasController
• OrderHateoasController

• Step-04: Implement self link in getUserById method
• Step-05: Implement self and relationship links in getAllUsers Method.

Relationship link will be with getAllOrders method.
• 5(A) - Self Link for each user
• 5(B) - Relation Ship Link with getAllOrders
• 5(C) - Self Link for getAllUsers

• Step-06: GIT commit code

Spring Boot – HATEOAS - Implementation Steps

StackSimplify

Development
Environment
Setup

Internationalization

Spring Boot

StackSimplifyKalyan Reddy Daida

• Internationalization – i18n
• Internationalization is a process that makes our application

adaptable to different languages without making any changes to our
source code.
• In other words, Internationalization is a readiness of Localization.
• Spring Boot provides LocaleResolver &

ResourceBundleMessageSource which is a foundation to the
internationalization.

Spring Boot Internationalization

StackSimplifyKalyan Reddy Daida

• Step-00: Create git branch for Spring Boot Internationalization
• Step-01: Create required beans and message property files per language

• LocaleResolver
• ResourceBundleMessageSource
• messages.properties
• messages_fr.properties

• Step-02: Create a simple rest service and convert it to support
internationalization.
• Step-03: GIT commit code

Internationalization - Implementation Steps

StackSimplify

Development
Environment
Setup

Static Filtering using
@JsonIgnore &

@JsonIgnoreProperties

Spring Boot

StackSimplifyKalyan Reddy Daida

• Static Filtering
• @JsonIgnore will be applied at field level in a model class (Entity).
• @JsonIgnoreProperties will be applied class level in a model class and we can

define list of fields that can be ignored.
• Simply hides the field from the Jackson parser.
• Cons
• Create or Update requests will fail after applying these annotations (POST,

PUT).

Static Filtering

StackSimplify

Development
Environment
Setup

Dynamic Filtering using
MappingJacksonValue

&
@JsonFilter

Spring Boot

StackSimplifyKalyan Reddy Daida

• We are going to use MappingJacksonValue to implement dynamic
filtering.
• @JsonFilter applied at Model class with filtername.
• Rest all logic related to filtering will be defined in service or controller

layer.
• Usecase-1: We will first implement it with a basic hash set.
• Usecase-2: We will send fields using REST service query parameters

to retrieve the data for those respective fields.

Dynamic Filtering

StackSimplify

Development
Environment
Setup

Filtering / Creating Views
using

@JsonView

Spring Boot

StackSimplifyKalyan Reddy Daida

• @JsonView is used to customize views.
• Applied at field level in a model class to categorize which field

belongs to which view.
• Applied at service level in a controller, so that for that respective

REST service, view defined in @JsonView will be applicable.
• Will be very useful if we have a single entity or model which need to

be provided with different views to different category of clients.

@JsonView

StackSimplifyKalyan Reddy Daida

• Course Example: User & Order Management
• We have a user entity defined with fields (userid, username, firstname,

lastname, email, role, ssn, orders)
• Consider we need to present data in 2 view patterns

• External View: userid, username, firstname, lastname, email
• Internal View: userid, username, firstname, lastname, email, role, ssn, orders

• Classic Example: Employee Management. (Assignment)
• We have employee data (empid, name, department, loginTime, logoutTime,

salary, lastPromotionDate)
• Consider we need to present employee data in 3 views.

• Normal View: empid, name, department
• Manager View: empid, name, department, loginTime, logoutTime
• HR View: empid, name, department, salary, lastPromotionDate

@JsonView

StackSimplify

Development
Environment
Setup

Implement DTOs
Using

Model Mapper

Spring Boot

StackSimplifyKalyan Reddy Daida

• DTOs stands for Data Transfer Objects
• Exposing entity objects through REST endpoints can mount security issues provided if we don’t

take enough care about which entity fields should be made available for publicly exposed REST
API.

• ModelMapper is a library which supports to convert entity objects to DTOs and DTOs to entity
objects.

• Intelligent
• No manual mapping needed.
• Automatically projects and flattens complex models.

• Refactoring Safe
• It provides a simple fluent API for handling special usecases
• The API is type safe and refactoring safe.

ModelMapper

StackSimplifyKalyan Reddy Daida

• Convention Based:
• ModelMapper provides predefined conventions and if user is in need can create custom

conventions.

• Extensible
• ModelMapper supports integrations with any type of data model. In short ModelMapper

does the heavy lifting for us.

• Reference
• http://modelmapper.org/
• http://modelmapper.org/getting-started/

ModelMapper

http://modelmapper.org/
http://modelmapper.org/getting-started/

StackSimplifyKalyan Reddy Daida

• Step-01: Create new GIT branch using IDE
• Step-02: Add Model Mapper dependency in pom.xml
• Step-03: Define Model Mapper bean in AppConfig
• Step-04: DTO Layer: Create a DTO with name as UserMmDTO.
• Step-05: Controller Layer: Create getUserDtoById method with Entity

to DTO Conversion logic with Model Mapper in a new controller
UserModelMapperController.
• Step-06: Commit & Push Code (using IDE)

Model Mapper Implementation Steps

StackSimplify

Development
Environment
Setup

Implement DTOS
Using

MapStruct

Spring Boot

StackSimplifyKalyan Reddy Daida

• MapStruct is a code generator that simplifies bean mappings.
• Mapping classes are generated during compilation and no runtime processing or

reflection is used.
• Mapping classes use simple method invocation, which makes them really easy to

debug.
• We generally notice a lot of boilerplate code converting POJOs to other POJOs.
• Very common type of conversion we see regularly is in between persistence-

backed entities and DTOs that go out to the client side.
• The problem that MapStruct solves is it can generate bean mapper classes

automatically. If we go by implementing them manually, creating bean mappers
is time-consuming.
• MapStruct also requires a processor plugin to be added

to pom.xml. The mapstruct-processor is used to generate the mapper
implementation during the build phase.

MapStruct

StackSimplifyKalyan Reddy Daida

• Step-01: Create new GIT branch using IDE
• Step-02: Update pom.xml with necessary dependencies for

MapStruct
• Step-03: Create UserMsDTO class required for MapStruct

Implementation.
• Step-04: Create the MapStruct Mapper Interface
• Step-05: Create the REST services by calling methods defined in

MapStruct Mapper.
• Step-06: Commit & Push code via IDE

MapStruct Implementation Steps

StackSimplify

Development
Environment
Setup

API Versioning

Spring Boot

StackSimplifyKalyan Reddy Daida

• URI Versioning
• Request Parameter Versioning
• Custom Header Versioning
• Media Type or Mime Type or Accept Header Versioning

API Versioning

StackSimplifyKalyan Reddy Daida

• URI Versioning
• http://localhost:8080/versioning/uri/users/v1.0/101
• http://localhost:8080/versioning/uri/users/v2.0/101

• Request Parameter Versioning
• http://localhost:8080/versioning/params/users/101?version=1
• http://localhost:8080/versioning/params/users/101?version=2

API Versioning

StackSimplifyKalyan Reddy Daida

• Custom Header Versioning

API Versioning

StackSimplifyKalyan Reddy Daida

• Media Type or Mime Type or Accept Header Versioning

API Versioning

StackSimplifyKalyan Reddy Daida

• Step-01: Create new GIT branch using IDE
• Step-02: Create two DTO’s and address field in User Entity.
• Step-03: Implement URI Versioning
• Step-04: Implement Request Parameter Versioning
• Step-05: Implement Custom Header Versioning
• Step-06: Implement Media Type Versioning
• Step-07: Commit & Push code via IDE

API Versioning - Implementation Steps

StackSimplify

Development
Environment
Setup

Swagger Integration

Spring Boot

StackSimplifyKalyan Reddy Daida

• Documenting REST API is very important primarily from API consumers point of
view.
• API Documentation helps consumers to understand and implement their client

applications without any confusion and also by avoiding costly mistakes.
• One of the most popular API documentation specifications is OpenApi, formerly

known as Swagger.
• Swagger allows us to describe API properties either using JSON or YAML

metadata.
• Swagger also provides a Web UI which transforms the JSON metadata to a nice

HTML documentation.
• Swagger UI can also be used as a REST client.
• Swagger integration with Spring Framework can be implemented using SpringFox

dependencies.

Spring Boot - Swagger Integration

StackSimplify

Swagger UI

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• Step-01: New GIT branch (usign IDE)
• Step-02: Add Springfox Dependencies to pom.xml
• Step-03: Create SwaggerConfig file
• Step-04: Adding API Info to modify header part of our documentation
• Step-05: Restrict scope of swagger document generation using API

Basepackages & Paths
• Step-06: Auto populate documentation for JSR-303 Validations
• Step-07: Adding Swagger Core Annotations to Model classes
• Step-08: Adding Swagger Core Annotations to Controller classes
• Step-09: Commit & Push code via IDE

Swagger – Implementation Steps

StackSimplify

Development
Environment
Setup

Actuator

Spring Boot

StackSimplifyKalyan Reddy Daida

• Monitor and Manage Spring Boot Applications using REST/JMX
Actuator endpoints.
• The endpoints offer
• Health Check
• Metrics Monitoring
• Access To Logs
• Thread Dumps
• Heap Dumps
• Environmental Info
• and many more

Spring Boot Actuator

StackSimplifyKalyan Reddy Daida

Spring Boot Actuator Endpoints

auditevents liquibase
beans metrics
caches mappings
conditions scheduledtasks
configprops sessions
env shutdown
flyway threaddump
health Spring MVC, Spring WebFlux, or Jersey
httptrace heapdump
info jolokia
integrationgraph logfile
loggers prometheus

StackSimplifyKalyan Reddy Daida

• Step-01: New GIT branch using IDE
• Step-02: Add Spring Boot Actuator Dependency in pom.xml and

verify actuator endpoints
• Step-03: Expose all Actuators endpoints and verify Health endpoint

and discuss about all other endpoints.
• Step-04: Info Endpoint: Populate build-info on info endpoint.
• Step-05: Metrics Endpoint

Spring Boot Actuator - Implementation Steps

StackSimplify

Development
Environment
Setup

Admin

Spring Boot

StackSimplifyKalyan Reddy Daida

• Spring Boot Admin server is a web application used for managing and
monitoring spring Boot Applications.
• It is available as a war packages so it can be deployed to any of the

JVMs (example: tomcat).
• Each application is considered as a client and registers to Spring Boot

Admin server.
• In the background, all the data displayed on Admin Server is using

Spring Boot Actuator endpoints enabled on client application.

Spring Boot Admin

StackSimplifyKalyan Reddy Daida

• Features
• Dashboard with desktop notifications
• View application health, info and details fetched using actuator endpoints.
• Configure & View Metrics (Live only)
• View Log files
• Manage logback logger levels
• View and use JMX beans via jolokia
• View Thread dump
• View HTTP request Traces (Live only)
• View history of registered applications
• Notifications is the top notch key feature (can notify in many ways)
• All in all it’s a Live monitoring and alerting solution.

• Cons
• Time series data is not available. It doesn’t store data.

Spring Boot Admin Server Features

StackSimplifyKalyan Reddy Daida

• Reminder Notifications
• Filtering Notifications
• Mail Notifications
• PageDuty Notifications
• OpsGenie Notifications
• HipChat Notifications

Spring Boot Admin Server - Notifications

• Slack Notifications
• Let’s Chat Notifications
• Microsoft Teams Notifications
• Telegram Notifications
• Discord Notifications

StackSimplifyKalyan Reddy Daida

• Step-01: Spring Boot Admin server - Base project setup
• Step-02: Point Spring Boot Client Application to Admin Server
• Step-03: Test the features in Spring Boot Admin Server

Spring Boot Admin Server - Steps

StackSimplify

Development
Environment
Setup

Micrometer

Spring Boot

StackSimplifyKalyan Reddy Daida

• Micrometer is the metrics collection facility included in Spring Boot
2’s Actuator.
• Micrometer is a dimensional-first metrics collection facade whose

aim is to allow us to time, count, and gauge your code with a vendor
neutral API.
• Through classpath and configuration, we can select one or several

monitoring systems to export our metrics data.
• It has also been backported to Spring Boot 1.5, 1.4, and 1.3 with the

addition of another dependency.

Spring Boot - Micrometer

StackSimplifyKalyan Reddy Daida

• A single Micrometer Timer is capable of producing time series
related to throughput, total time, maximum latency of recent
samples, pre-computed percentiles, percentile histograms, and SLA
boundary counts.
• The change to Micrometer arose out of a desire to better serve a

wave of dimensional monitoring systems (think Prometheus,
Datadog, Wavefront, SignalFx, Influx).
• Spring Boot is enabling us to choose one or more monitoring systems

to use today, and change our mind later as our needs change without
requiring a rewrite of our custom metrics instrumentation.
• https://micrometer.io/docs

Spring Boot - Micrometer

https://micrometer.io/docs

StackSimplifyKalyan Reddy Daida

Monitoring Systems - Supported

AppOptics Instana

Atlas JMX

Datadog KairosDB

Dynatrace New Relic

Elastic Prometheus

Gangila SignalFx

Graphite StatsD

Humio WaveFront

Influx Simple (In memory backend used as fallback option)

StackSimplifyKalyan Reddy Daida

• Step-01: New GIT branch using IDE
• Step-02: Add Micrometer dependency for Metrics and view metrics

using simple in-memory backend.
• Step-03: Integrate with JMX and view metrics in JConsole using JMX
• Step-04: Integrate with AppOptics to export metrics and View

metrics in AppOptics (Solarwinds product).
• Step-05: Perform Tests using POSTMAN Collection Runner
• Step-06: Commit & Push code via IDE

Micrometer - Implementation Steps

StackSimplifyKalyan Reddy Daida

Thank You

